campo espinorial es un tipo de campo físico que generaliza los conceptos de campos vectoriales y tensoriales. Si un campo tensorial es un tipo de representación lineal del grupo de Lorentz , un campo espinorial es una representación de su recubridor universal, el grupo lineal especial .
Muchas magnitudes físicas representables mediante campos tensoriales pueden representarse también matemáticamente por campos espinoriales de manera equivalente. Sin embargo algunos campos espinoriales no admiten análogos tensoriales. En ese sentido los campos espinoriales generalizan los campos vectoriales y tensoriales, que pueden ser vistos como casos particulares de magnitudes espinoriales. La mecánica cuánticahace un uso extensivo de los campos espinoriales sin análogo clásico.
Introducción[editar]
Los vectores y tensores pueden ser vistos como espacios vectoriales reales asociados a una cierta representación de grupo del grupo de Lorentz, por lo que sus componentes varían de cierta manera peculiar cuando se expresan respecta a una base vectorial o una base rotada respecto a la anterior por ejemplo. Los espinores son espacios vectoriales complejos asociados a representaciones de grupo del espacio recubridor universal del grupo de Lorentz, es decir, o más exactamente de su álgebra de Lie.
Un campo espinorial se caracteriza por dos peculiaridades:
- Las medidas obtenidas por dos observadores inerciales de un mismo campo tensorial, están relacionadas por leyes de transformación asociadas a una representación de grupos de Lie o (Los campos vectoriales y tensoriales se transforman según representaciones de o ).
- Las únicas magnitudes físicas directamente medibles son funciones "cuadráticas" de las componentes del campo (éstas si se transforman de acuerdo a y ).
Matemáticamente los espinores más simples son vectores cuyas componentes son números complejos (la dimensión vectorial sobre los complejos de un espacio de espinores de Weyl es dos, mientras que para los espinores de Dirac es cuatro). La diferencia entre un campo vectorial y un campo espinorial es la ley de transformación de componentes según diferentes observadores. Técnicamente un campo espinorial es una sección del fibrado espinorial del espacio-tiempo.
Formalmente, un campo espinorial es un campo tal que toma valores sobre un espacio vectorial, sobre el que se ha definido una representación del álgebra de Lie del grupo de Lorentz. El tipo más sencillo vector de dos componentes complejas (espinor ordinario o de dos componentes), cuyas componentes para diferentes observadores están relacionadas mediante matrices que constituyen una representación de . Además en la descripción de fermiones y neutrinos es común el uso de espinores de cuatro componentes (espinor de Dirac).
Motivación matemática[editar]
Las simetrías de un problema físico requieren que ciertas ecuaciones y entidades que representan magnitudes físicas, sean invariantes bajo la acción de un grupo sobre cierto conjunto de entes matemáticos. En relatividad especial el espacio-tiempo de Minkowski tiene al grupo de Poincaré como grupo de simetría. Debido a que dicho el grupo de Lorentz es un subgrupo del grupo de Poincaré, la covariancia de una teoría relativista requiere que una acción del grupo de Lorentz deje invariante ciertas expresiones de la teoría. Los aspectos cuánticos de la teoría requieren considerar representaciones proyectivas de dicho grupo.
Un teorema de Wigner lleva a que las representaciones proyectivas de un grupo de Lie, pueden obtenerse a partir de la representaciones ordinarias de su recubridor universal. Los recubridores universales del grupo de Lorentz y del grupo de rotaciones espaciales son respectivasmente y .
La motivación es que los grupos de Lie y son además de compactos, simplemente conexos, puesto que el tratamiento cuántico de un campo físico requiere estudiar las representaciones proyectivas del grupo de simetría asociado al campo. Además resulta que las representaciones proyectivas de un grupo de Lie se reducen a las representaciones ordinarias de su recubridor universal. Así substituir los grupos y por sus recubridores universales y resuelve el problema de determinar todas la representaciones proyectivas irreducibles de los dos primeros grupos.
Motivación física[editar]
En teoría cuántica de campos cualquier tipo de partícula material es tratada como un campo. Los dos tipos básicos de partículas son los bosones y los fermiones, los primeros pueden ser descritos adecuadamente mediante campos vectoriales o tensoriales mientras que los segundos sólo pueden ser descritos mediante campos espinoriales. Eso se sigue del teorema de Wigner y del teorema espín-estadística.
Espinores en relatividad especial[editar]
Espinores de Weyl[editar]
Los espinores de Weyl toman valores sobre . Como campos espinoriales no son directamente medibles ya que sólo medibles combinaciones cuadráticas o con que son un producto de un número par de componentes de espinores de Weyl. Por ejemplo la densidad de electrones es de ese tipo. Existen dos tipos de espinores de Weyl usualmente llamados espinores dextrógiros y espinores levógiros. Cada uno de estos tipos de espinores está asociado a dos representaciones del álgebra de Lie del grupo de Lorenz diferentes, aunque ambas tienen la misma dimensión. Dados dos campos espinoriales uno dextrógiro (D) y otro levógiro (L), sus leyes de transformación de componentes vienen dadas por:
La distinción anterior puede explicarse en los siguientes términos: las representaciones del álgebra de Lie complejificada del grupo de Lorentz pueden reducirse a las representaciones irreducibles de ya que dicha álgebra pude considerarse como la suma directa de dos álgebras isomorfas:
La notación se refiere a los pesos i y j de la representación en cada uno de los dos espacios .
Espinores de Dirac[editar]
Un espinor de Dirac no es otra cosa que un elemento del doble producto cartesiano de un espacio de espinores ordinarios o espinores de Weyl:
Los espinores de Dirac también pueden usarse para representarse espinores de Weyl. Para los espinores de Dirac pueden escogerse diferentes interpretaciones en función de la forma que se tome para las matrices de Dirac. La representación de Weyl para las matrices de Dirac es la más conveniente para calcular transformaciones de Lorenz de espinores porque en ella las componentes
Desde un punto de vista elemental campo espinorial de Dirac es un campo vectorial de cuatro componentes complejas, tal que sus componentes medidas por diferentes observadores están relacionadas por relaciones definibles en términos de espinores ordinarios.
campo fermiónico es un campo cuántico cuyo cuanto es el fermión; es decir, obedece a la estadística de Fermi-Dirac. Los campos fermiónicos obedecen relaciones de anticonmutación canónica en lugar de las relaciones de conmutación canónicas de campos bosónicos.
El ejemplo más prominente de campo fermiónico es el campo de Dirac, que describe fermiones con espín-1/2 de: electrones, protones y cuarks. El campo de Dirac puede ser descrito como un campo espinorial de 4- componentes o como un par de espinores de Weyl de 2 componentes. Los fermiones de Majorana espín-1/2, tales como el hipotético Neutralino, pueden describirse como un espinor de Majorana dependiente de 4 componentes o un solo espinor de Weyl de 2 componentes. No se sabe si el Neutrino es un fermión de Majorana o un fermión de Dirac (véase también los esfuerzos experimentales para determinar esto en el fenómeno de doble desintegración beta).
Propiedades básicas[editar]
Los campos fermiónicos libres (no interactuantes) obedecen relaciones de anticonmutación canónica, es decir, implican el anticommutator{a,b} = ab + ba en lugar del conmutador [a,b] = ab − ba de la mecánica cuántica estándar o bosónica. Esas relaciones se mantienen también para campos fermiónicos interactuantes entre sí en el escenari de interacción, donde los campos evolucionan en el tiempo como si fuesen libres y los efectos de interacción estuviesen codificados en la evolución de los estados.
Son estas relaciones anticonmutación que implican la estadística de Fermi-Dirac para los cuantos del campo. También resultan en el principio de exclusión de Pauli: dos partículas fermiónicas no pueden ocupar el mismo estado al mismo tiempo.
Campos de Dirac[editar]
El ejemplo más destacado de campo fermiónico espin-1/2 es el campo de Dirac (en honor de Paul Dirac) y se denota por ψ (x). La ecuación del movimiento para un campo libre es la ecuación de Dirac ,
donde γμ son matrices gamma y m es la masa. Las soluciones más simples posibles para esta ecuación son soluciones de onda plana, y . Estas soluciones de onda plana forman una base para los componentes de Fourier de ψ (x), lo que permite la expansión general del campo de Dirac como sigue,
Las etiquetas a y b son índices espinoriales y la etiqueta s representa el índice de espín, así que consecuentemente para el electrón, partícula de espín 1/2, s =+1/2 o s =−1/2. El factor de energía es el resultado de tener una medida de integración invariante de Lorentz. Ya que ψ (x) puede ser considerado como un operador, los coeficientes de sus modos de Fourier deben ser operadores. Por lo tanto, y son operadores. Las propiedades de estos operadores se pueden discernir de las propiedades del campo. Ψ (x) y obedecer las relaciones anticonmutación
Colocando las expansiones para ψ (x) y ψ (y), se pueden calcular las relaciones anticonmutación para los coeficientes.
De manera análoga a la aniquilación no relativista y a los operadores de creación y sus conmutadores, estos álgebras conducen a la interpretación física que crea un fermión de impulso p y espín s, y crea un antifermión de impulso q y espín r. El campo general ψ (x) se ve ahora que es una suma ponderada (por el factor de energía) sobre todos los posibles espines y momentos para la creación de fermiones y antifermiones. Su campo conjugado, , es todo lo contrario, una suma ponderada de todos los posibles espines y momentos para aniquilar fermiones y antifermiones.
Con los modos de campo entendidos y el campo conjugado definido, es posible construir las cantidades invariantes de Lorentz para campos fermiónicos. Lo más sencillo es la cantidad . Esto hace que la razón de la elección de sea clara. Esto es porque la transformación general de Lorentz en ψ no es unitaria, así que la cantidad no sería invariante bajo tales transformaciones, por lo que la inclusión de sería para corregir esto. La otra posible cantidad invariante de Lorentz no nulo, hasta una conjugación total, construible a partir de los campos fermiónicos es .
Como combinaciones lineales de esas cantidades son también invariantes de Lorentz, esto conduce naturalmente a la densidad de Lagrange para el campo de Dirac por el requisito de que la ecuación de Euler-Lagrange del sistema recupere la ecuación de Dirac.
Esta expresión tiene sus índices suprimidos. Cuando se reintrodujo la plena expresión es
Dada la expresión para ψ (x) podemos construir el propagador de Feynman del campo fermiónico:
definimos el producto ordenado en el tiempo para fermiones con un signo menos debido a su naturaleza anticonmutativa
Al enchufar nuestra expansión de la onda de plano para el campo de fermiónico en la ecuación anterior se obtiene:
donde hemos empleado la notación de slash de Feynman. Este resultado tiene sentido ya que el factor
es simplemente el inverso del operador actuando sobre ψ (x) en la ecuación de Dirac. Tenga en cuenta que el propagador de Feynman para el campo de Klein–Gordon tiene esta misma propiedad. Debido a que todas las observables razonables (como energía, carga, número de partículas, etc.) están construidos en un número par de campos fermiónicos, desaparece la relación de conmutación entre cualesquiera dos observables en los puntos del espacio-tiempo, fuera del cono de luz. Como sabemos por la mecánica cuántica elemental, dos observables que conmutan al mismo tiempo, pueden medirse simultáneamente. Hemos, por tanto, implementado correctamente la invariancia de Lorentz para el campo de Dirac y conservado la causalidad .
Teorías de campo más complicadas, que implican interacciones (como en la teoría de Yukawa o la electrodinámica cuántica) pueden ser analizadas también por varios métodos perturbativos y no perturbativos.
Los campos de Dirac son un ingrediente importante del Modelo Estándar.
ecuación de Dirac es la versión relativista de la ecuación de ondas de la mecánica cuántica y fue formulada por Paul Dirac en 1928. Da una descripción de las partículas elementales de espín ½, como el electrón, y es completamente consistente con los principios de la mecánica cuántica y de la teoría de la relatividad especial. Además de dar cuenta del espín, la ecuación predice la existencia de antimateria.
Forma de la ecuación[editar]
Ya que la ecuación de Dirac fue originalmente formulada para describir el electrón, las referencias se harán respecto a "electrones", aunque actualmente la ecuación se aplica a otros tipos de partículas elementales de espín ½, como los quarks. Una ecuación modificada de Dirac puede emplearse para describir de forma aproximada los protones y los neutrones, formados ambos por partículas más pequeñas llamadas quarks (por este hecho, a protones y neutrones no se les da la consideración de partículas elementales).
La ecuación de Dirac presenta la siguiente forma:
siendo m la masa en reposo del electrón, c la velocidad de la luz, p el operador de momento, la constante reducida de Planck, x y t las coordenadas del espacio y el tiempo, respectivamente; y ψ (x, t) una función de onda de cuatro componentes. La función de onda ha de ser formulada como un espinor (objeto matemático similar a un vector que cambia de signo con una rotación de 2π descubierto por Pauli y Dirac) de cuatro componentes, y no como un simple escalar, debido a los requerimientos de la relatividad especial. Los α son operadores lineales que gobiernan la función de onda, escritos como una matriz y son matrices de 4×4 conocidas como matrices de Dirac. Hay más de una forma de escoger un conjunto de matrices de Dirac; un criterio práctico es:
La ecuación de Dirac describe las amplitudes de probabilidad para un electrón solo. Esta teoría de una sola partícula da una predicción suficientemente buena del espín y del momento magnético del electrón, y explica la mayor parte de la estructura fina observada en las líneas espectrales atómicas. También realiza una peculiar predicción de que existe un conjunto infinito de estados cuánticos en que el electrón tiene energía negativa. Este extraño resultado permite a Dirac predecir, por medio de las hipótesis contenidas en la llamada teoría de los agujeros, la existencia de electrones cargados positivamente. Esta predicción fue verificada con el descubrimiento del positrón, el año 1932.
A pesar de este éxito, la teoría fue descartada porque implicaba la creación y destrucción de partículas, enfrentándose así a una de las consecuencias básicas de la relatividad. Esta dificultad fue resuelta mediante su reformulación como una teoría cuántica de campos. Añadir un campo electromagnético cuantificado en esta teoría conduce a la moderna teoría de la electrodinámica cuántica (Quantum Electrodynamics, QED).
Deducción de la ecuación de Dirac[editar]
La ecuación de Dirac es una extensión al caso relativista de la ecuación de Schrödinger, que describe la evolución en el tiempo de un sistema cuántico:
Por conveniencia, se trabajará en la base de posiciones, en que el estado del sistema es representado por la función de onda ψ(x,t). En esta base, la ecuación de Schrödinger se formula de la siguiente manera:
donde el hamiltoniano H denota un operador que actúa sobre una función de onda, y no sobre vectores de estado.
Debe especificarse el hamiltoniano de forma que describa adecuadamente la energía total del sistema en cuestión. Sea un electrón "libre" aislado de campos de fuerza externos. En un modelo no relativista, se adopta un hamiltoniano análogo a la energía cinética de la mecánica clásica (de momento ignorando el espín):
siendo p los operadores de momento en cada dirección del espacio j = 1, 2, 3. Cada operador de momento actúa sobre la función de onda como una derivada espacial:
Para describir un sistema relativista, debe encontrarse un hamiltoniano diferente. Se asume que los operadores de momento conservan la definición anterior. De acuerdo con la famosa relación masa-momento-energía de Albert Einstein, la energía total de un sistema viene dada por la expresión:
de la cual se deduce que
Esta no es una ecuación satisfactoria, porque no trata por igual el espacio y el tiempo, uno de los principios básicos de la relatividad especial (el cuadrado de esta ecuación lleva a la ecuación de Klein-Gordon). Dirac razonó que, mientras la parte derecha de la ecuación contenía una derivada de primer orden respecto al tiempo, la parte de la izquierda debía contener igualmente una primera derivada respecto al espacio (i. e., los operadores de momento). Una posibilidad para obtener esta situación es que la cantidad de la raíz cuadrada sea un cuadrado perfecto. Considerando
donde las α son constantes que deben ser determinadas. Elevando al cuadrado, y comparando coeficientes de cada término, se obtienen las siguientes condiciones por α:
Aquí, I es el elemento identidad. Estas condiciones pueden sintetizarse en:
donde {...} es el anticonmutador, definido como {A,B} ≡ AB+BA, y δ es la delta de Kronecker, que tiene valor 1 si los dos subíndices son iguales, y 0 en otro caso.
Estas condiciones pueden no ser satisfechas si los α son números ordinarios, pero sí se cumplen si las α son determinadas matrices. Las matrices deben ser hermíticas, ya que el hamiltoniano es un operador hermítico. Las matrices más pequeñas que funcionan son las 4×4, pero hay más de una elección posible, o representación, de las matrices. Si bien la elección de la representación no puede afectar a las propiedades de la ecuación de Dirac, afecta al significado físico de las componentes individuales de la función de onda.
Anteriormente se ha presentado la representación usada por Dirac. Una forma más compacta de describir esa representación es la siguiente:
donde 0 e I son las matrices 2×2 cero (nula) e identidad, respectivamente; y σj's (j=1, 2, 3) son las matrices de Pauli.
Ahora es sencillo operar la raíz cuadrada, de la que se obtiene la ecuación de Dirac. El hamiltoniano de esta ecuación
se denomina hamiltoniano de Dirac.
Naturaleza de la función de onda[editar]
Como la función de onda ψ se representa por la matriz de Dirac 4×1, ha de ser un objeto de 4 componentes. Se verá en la próxima sección que la función de onda contiene dos conjuntos de grados de libertad, uno asociado a la energía positiva y otro a la negativa. Cada conjunto contiene dos grados de libertad que describen las amplitudes de probabilidad de que el espín sea hacia arriba o hacia abajo, según una dirección especificada.
Se puede escribir explícitamente la función de onda como una matriz columna:
La ecuación de la onda dual puede ser escrita como una matriz simple:
donde el superíndice denota una conjugación compleja. La dualidad de una función de onda escalar (un componente) es un conjugado complejo.
Como en la mecánica cuántica de una partícula única, el "cuadrado absoluto" de la función de onda da la densidad de probabilidad de la partícula en cada posición x, tiempo t. En este caso, el "cuadrado absoluto" es obtenido por multiplicación de matrices:
La conservación de la probabilidad da la condición de normalización
Aplicando la ecuación de Dirac, podemos examinar el flujo local de probabilidad:
El flujo de probabilidad J viene dado por
Multiplicando J por la carga del electrón e se obtiene la densidad de corriente eléctrica j llevada por el electrón.
Los valores de las componentes de la función de onda dependen del sistema de coordenadas. Dirac mostró cómo ψ se transforma bajo cambios generales del sistema coordenado, incluyendo rotaciones en el espacio tridimensional, así como en las transformaciones de Lorentz entre los esquemas relativistas de referencia. Esto lleva a que ψ no se transforma como un vector, debido a rotaciones; y de hecho es un tipo de objeto conocido como espinor.
Espectro de energía[editar]
Es instructivo hallar los estados propios de energía del Hamiltoniano de Dirac. Para ello, se resuelve la ecuación de Schrödinger independiente del tiempo:
donde ψ es el fragmento independiente del tiempo de la autofunción (eigenfunction) de la energía:
Buscamos una solución de onda plana. Por conveniencia, se toma la z del eje como la dirección en que la partícula se está moviendo, como
donde w es un espinor constante de cuatro componentes, y p es el momento de la partícula, tal y como podemos verificar aplicando el operador de momento a la función de onda. En la representación de Dirac, la ecuación por ψ0 disminuye en la ecuación de valores propios.
Para cada valor de p, hay dos espacios propios, ambos de dos dimensiones. Un espacio propio contiene valores propios positivos, y el otro valores propios negativos, de la forma:
El espacio propio positivo está estructurado por los estados propios:
y el espacio propio negativo por los estados propios:
Donde
El primer estado propio de la estructura de cada espacio propio tiene espín apuntando en la dirección +z ("espín hacia arriba") y el segundo espín propio tiene espín apuntando en la dirección -z ("espín hacia abajo").
En el límite no relativista, la componente del espinor ε reduce la energía cinética de la partícula, que es insignificante comparada con pc:
En este límite, por tanto, podemos interpretar los cuatro componentes de la función de onda como sus amplitudes respectivas del (I) espín hacia arriba con energía positiva, y el (II) espín hacia abajo con energía positiva, (III) espín hacia arriba con energía negativa, y (IV) espín abajo con energía negativa. Esta descripción no es muy exacta en el régimen de la relatividad, donde los componentes no nulos del espinor son de medidas similares.
Teoría de huecos[editar]
Las soluciones negativas de E en la sección precedente son problemáticas: desde el punto de vista de la mecánica relativista, la energía de una partícula en reposo (p = 0) sería E = mc2 tanto como E = - mc2. Matemáticamente parece no haber motivo alguno para rechazar las soluciones correspondientes a energía negativa.
Para afrontar este problema, Dirac introdujo una hipótesis (conocida como teoría de huecos) según la cual el vacío es el estado más importante de los cuantos, en el que todos los estados propios de energía negativa del electrón están ocupados. Esta descripción del vacío, como un «mar» de electrones es llamada el mar de Dirac. El principio de exclusión de Pauli prohíbe a los electrones ocupar el mismo estado, cualquier electrón adicional sería forzado a ocupar un estado propio de energía positiva, y los electrones de energía positiva no podrían decaer a estados propios de energía negativa.
Posteriormente Dirac razonó que si los estados propios de energía negativa están llenos de forma incompleta, cada estado propio no ocupado —llamado hueco— podría comportarse como una partícula cargadapositivamente. El hueco tiene energía positiva, ya que se necesita energía para crear un par partícula-hueco a partir del vacío. Dirac en un principio pensaba que el hueco era un protón, pero Hermann Weyl advirtió de que el hueco se comportaría como si tuviera la misma masa del electrón, mientras que el protón es, aproximadamente, dos mil veces más masivo. El hueco fue finalmente identificado como positrón, partícula descubierta experimentalmente por Carl David Anderson en 1932.
Por necesidad, la teoría de huecos asume que los electrones de energía negativa en el mar de Dirac no interaccionan unos con otros, ni con los electrones de energía positiva. Con esta asunción, el mar de Dirac produciría una inmensa (de hecho, infinita) carga eléctrica negativa, la mayor parte de la cual de una forma u otra sería anulada por un mar de carga positiva debido a que el vacío permanece eléctricamente neutro. Sin embargo, es completamente insatisfactorio postular que los electrones de energía positiva pueden ser afectados por el campo electromagnético, mientras los electrones de energía negativa no lo son. Por este motivo, los físicos abandonaron la teoría de huecos en favor de la teoría de campos de Dirac, que deja de lado el problema de los estados de energía negativa tratando los positrones como verdaderas partículas. (Caveat: en algunas aplicaciones de la física de la materia condensada, los conceptos basados en la «teoría de huecos» son válidos). El mar de electrones de conducción, en un conductor eléctrico, llamado mar de Fermi, contiene electrones con energías más altas que el potencial químico del sistema. Un estado vacío en el mar de Fermi se comporta como un electrón cargado positivamente, si bien se remite tanto a un «hueco» como a un positrón. La carga negativa del mar de Fermi es equilibrada por la carga positiva de la reja iónica del material.
En el enfoque moderno la interpretación del mar de electrones se refiere al problema de la elección del estado del vacío. De hecho en algunas teorías, diferentes elecciones del estado del vacío pueden tener consecuencias físicas diferentes.
Interacción electromagnética[editar]
Hasta aquí se ha considerado un electrón que no está en contacto con campos externos. Continuando por analogía con el hamiltoniano de una partícula cargada en la electrodinámica cuántica, se puede modificar el hamiltoniano de Dirac para incluir los efectos de un campo electromagnético. El hamiltoniano revisado es (en unidades del Sistema Internacional):
donde e es la carga eléctrica del electrón y A y Φ son los potenciales electromagnéticos vectorial y escalar, respectivamente. Aquí, los potenciales se escriben como funciones del tiempo t y del operador de posición x. Esta es una aproximación semiclásica que es válida cuando las fluctuaciones cuánticas del campo (por ejemplo, la emisión y absorción de fotones) no son importantes.
Dando a Φ el valor 0 y trabajando en el límite no relativista, Dirac solucionó para las dos primeras componentes en las funciones de onda de energía positiva (que son las componentes dominantes en el límite no relativista), obteniendo
donde B = ×A es el campo magnético que actúa sobre la partícula. Esta es precisamente la ecuación de Paulipara una partícula de espín ½ no relativista, con un momento magnético (por ejemplo: un factor g de espín igual a 2). El momento magnético real del electrón es mayor que eso, pero únicamente un 0,12% mayor. La diferencia se debe a las fluctuaciones cuánticas en el campo electromagnético, que pueden ser menospreciadas.
Años después del descubrimiento de la ecuación de Dirac, la mayoría de físicos creían que también describía el protón y el neutrón, que también son partículas de espín -1/2. Sin embargo, desde los experimentos de Stern y Frisch en 1933, se descubrió que el momento magnético de estas partículas era notablemente diferente de las predicciones de la ecuación de Dirac. El protón tiene un momento magnético 2,79 veces mayor que la predicción (con la masa del protón puesta como m en las fórmulas mencionadas), i.e., un factor g de 5,58. El neutrón, que es elécticamente neutro, tiene un factor g de -3,83. Estos momentos magnéticos anormales fueron el primer indicio experimental de que el protón y el neutrón no eran partículas elementales. De hecho están compuestos de partículas más pequeñas llamadas quarks.
Interacción hamiltoniana[editar]
Es digno de tenerse en cuenta que el hamiltoniano puede ser escrito como suma de dos términos:
Donde Hel es el hamiltoniano de Dirac para un electrón libre y Hint es el hamiltoniano de la interacción electromagnética. Este último se puede escribir como:
Esto tiene el valor esperado
donde ρ es la densidad de carga eléctrica y j es la densidad de corriente eléctrica. La integral en el último término es la densidad de energía de interacción. Eso es una cantidad escalar covariante relativista, como puede observarse escribiéndolo en términos del cuadrivector carga-corriente j = (ρc, j) y el cuatrivector del potencial A = (φ/c, A):
Átomo hidrogenoide relativista[editar]
La ecuación de Schrödinger aplicada a electrones es sólo una aproximación no relativista a la ecuación de Dirac que da cuenta tanto del efecto del espín del electrón. En el tratamiento de Dirac de los electrones de hecho la función de onda debe substituirse por un espinor de cuatro componentes.
Donde las funciones F y G se expresan en términos de funciones hipergeométricas:
A modo de comparación con el caso no relativista se dan a continuación la forma explícita del espinor de funciones de onda del estado fundamental:
El límite no relativista se obtiene haciendo tender , es decir, haciendo tender la constante de estructura fina a cero.
El tratamiento de los electrones mediante la ecuación de Dirac sólo supone pequeñas correcciones a los niveles dados por la ecuación de Schrödinger. Tal vez el efecto más interesante es la desaparición de la degeneración de los niveles, por el efecto de la interacción espín-órbita consistente en que los electrones con valores diferentes del tercer número cuántico m (número cuántico magnético) tienen diferentes energía debido al efecto sobre ellos del momento magnético del núcleo atómico. De hecho los niveles energéticos vienen dados por:1
Donde:
- , es la masa del electrón.
- , son la velocidad de la luz y la constante de estructura fina.
- , son el número de protones del núcleo, el número cuántico principal y el número cuántico magnético.
Si se prescinde de la energía asociada a la masa en reposo del electrón estos niveles pueden resultan cercanos a los predichos por la ecuación de Schrödinger, especialmente en el caso m = 0:
Notación covariante relativista[editar]
Volvemos a la ecuación de Dirac para el electrón libre. A veces es conveniente escribir la ecuación en una forma covariante relativista, en la que las derivadas en el tiempo y el espacio se tratan al mismo nivel. Para hacer esto, debe tenerse en cuenta que el operador del momento p funciona como una derivada espacial:
Multiplicando cada miembro de la ecuación de Dirac por (recordando que ) y sustituyendo en la mencionada definición de p, se obtiene
Ahora, se definen cuatro matrices gamma:
Estas matrices tienen la propiedad de que
donde η, una vez más, es la métrica del espacio-tiempo plano. Estas relaciones definen un álgebra de Clifforddenominada «álgebra de Dirac». La ecuación de Dirac puede ser ahora reformulada, usando el cuatrivector de posición-tiempo x = (ct, x), como
O como
- La forma usual de la ecuación en teoría cuántica de campos y física de partículas, empleando el convenio de suma de Einstein y un sistema de unidades en el que y es
No hay comentarios:
Publicar un comentario