lunes, 11 de septiembre de 2017

Física - Magnitudes físicas

cantidades molares

La presión parcial de un gas, en atmósferas, en una mezcla o solución, sería aproximadamente la presión de dicho gas si se eliminaran repentinamente todos los demás componentes de la mezcla o solución y sin que hubiese variación de temperatura. La presión parcial de un gas en una mezcla es la medida de la actividad termodinámica de las moléculas de dicho gas y, por lo tanto, es proporcional a la temperatura y concentración del mismo.

Ley de Dalton de las presiones parciales[editar]

La presión parcial de un gas ideal en una mezcla es igual a la presión que ejercería en caso de ocupar él solo el mismo volumen a la misma temperatura. Esto sucede porque las moléculas de un gas ideal están tan alejadas unas de otras que no interactúan entre ellas. La mayoría de los gases reales se acerca bastante a este modelo.
Como consecuencia de esto, la presión total, es decir la suma de todas estas presiones, de una mezcla en equilibrio es igual a la suma de las presiones parciales de los gases presentes. Por ejemplo, para la reacción dada:
N2 + 3H2 ↔ 2NH3
La presión total es igual a la suma de las presiones parciales individuales de los gases que forman la mezcla:
Donde P es la presión total de la mezcla y Px denota la presión parcial de x.
Para calcular la presión parcial de un gas basta con multiplicar su fracción molar por la presión total de la mezcla. Es decir:
Si se disminuye el volumen del recipiente, la presión total de los gases aumenta. Por ser la reacción reversible, la posición de equilibrio se mueve hacia el lado de la reacción con un menor número de moles (en este caso, el producto del lado derecho). Por el Principio de Le Châtelier, esto sería como aumentar la fracción de la presión completa disponible a los productos, y disminuir la fracción disponible a los reactivos (porque hay más moles de reactivo que de producto). Varía la composición de los gases, por lo que aumenta la presencia de amoníaco. De forma similar, un cambio en la temperatura del sistema propicia la producción de reactivos (porque la reacción inversa es endotérmica).
La presión parcial de un gas es proporcional a su fracción molar, lo que es una medida de concentración. Esto quiere decir que se puede hallar la constante de equilibrio para una reacción en equilibrio que involucre una mezcla de gases a partir de la presión parcial de cada uno y la fórmula química de la reacción. La constante de equilibrio para los gases se denota como KP. Para una reacción:
aA + bB ↔ cC + dD
Así, la constante de equilibrio KP se puede calcular con,
Aunque la composición de los gases varía cuando se comprime el recipiente, el equilibrio permanece invariante (asumiendo que la temperatura permanezca también constante).

Fase líquida frente a fase gaseosa[editar]

La presión parcial en un fluido es igual a la del gas con el que el fluido está en equilibrio.
Cuando se expone un líquido a un gas, las moléculas del gas se disolverán en el líquido.

Ley de Henry[editar]

La ley de Henry se puede usar para determinar la presión parcial de un gas en el seno de un fluido.
P(z) = P x Xz
Por ejemplo, a 50 metros de profundidad (165 pies), la presión absoluta es de 6 bar (1 bar correspondiente a la presión atmosférica + 5 bar por la debida al agua) y la presión parcial de los componentes principales del aire, 21 % oxígeno y 79 % nitrógeno son:
P(N2) = 6 bar x 0,79 = 4,74 bar
P(O2) = 6 bar x 0,21 = 1,26 bar
El margen considerado seguro en cuanto a las presiones parciales de oxígeno en una mezcla gaseosa está entre 0,16 bar y 1,6 bar. Hay riesgo de sufrir hipoxia y pérdida repentina del conocimiento con una P(O2) menor de 0,16 bar. La toxicidad del oxígeno, implicando convulsiones, se convierte en un riesgo con una P(O2) superior a 1,6 bar. La presión parcial del oxígeno determina la profundidad máxima operativa de una mezcla gaseosa.
La narcosis producida por efecto del nitrógeno es un problema en las mezclas gaseosas que contienen dicho gas. La presión típica máxima prevista del nitrógeno en submarinismo recreativo es de unos 3,2 bar, basada en una profundidad equivalente de aire de 30 metros.

La ley de las presiones parciales (conocida también como ley de Dalton) fue formulada en el año 1801 por el físicoquímico y matemático británico John Dalton. Establece que la presión de una mezcla de gases, que no reaccionan químicamente, es igual a la suma de las presiones parciales que ejercería cada uno de ellos si sólo uno ocupase todo el volumen de la mezcla, sin variar la temperatura. La ley de Dalton es muy útil cuando deseamos determinar la relación que existe entre las presiones parciales y la presión total de una mezcla.

Ley de Dalton de las presiones parciales[editar]

La presión parcial de un gas ideal en una mezcla es igual a la presión que ejercería en caso de ocupar él solo el mismo volumen a la misma temperatura. Esto sucede porque las moléculas de un gas ideal están tan alejadas unas de otras que no interactúan entre ellas. La mayoría de los gases reales se acerca bastante a este modelo.
Como consecuencia de esto, la presión total, es decir la suma de todas estas presiones, de una mezcla en equilibrio es igual a la suma de las presiones parciales de los gases presentes. Por ejemplo, para la reacción dada:
N2 + 3H2 ↔ 2NH3
La presión total es igual a la suma de las presiones parciales individuales de los gases que forman la mezcla:
Donde P es la presión total de la mezcla y Px denota la presión parcial de x.
Para calcular la presión parcial de un gas basta con multiplicar su fracción molar por la presión total de la mezcla. Es decir:
Si se disminuye el volumen del recipiente, la presión total de los gases aumenta. Por ser la reacción reversible, la posición de equilibrio se mueve hacia el lado de la reacción con un menor número de moles (en este caso, el producto del lado derecho). Por el Principio de Le Châtelier, esto sería como aumentar la fracción de la presión completa disponible a los productos, y disminuir la fracción disponible a los reactivos (porque hay más moles de reactivo que de producto). Varía la composición de los gases, por lo que aumenta la presencia de amoníaco. De forma similar, un cambio en la temperatura del sistema propicia la producción de reactivos (porque la reacción inversa es endotérmica).
La presión parcial de un gas es proporcional a su fracción molar, lo que es una medida de concentración. Esto quiere decir que se puede hallar la constante de equilibrio para una reacción en equilibrio que involucre una mezcla de gases a partir de la presión parcial de cada uno y la fórmula química de la reacción. La constante de equilibrio para los gases se denota como KP. Para una reacción:
aA + bB ↔ cC + dD
Así, la constante de equilibrio KP se puede calcular con,
Aunque la composición de los gases varía cuando se comprime el recipiente, el equilibrio permanece invariante (asumiendo que la temperatura permanezca también constante).

Fase líquida frente a fase gaseosa[editar]

La presión parcial en un fluido es igual a la del gas con el que el fluido está en equilibrio.
Cuando se expone un líquido a un gas, las moléculas del gas se disolverán en el líquido.

Ley de Henry[editar]

La ley de Henry se puede usar para determinar la presión parcial de un gas en el seno de un fluido.
P(z) = P x Xz
Por ejemplo, a 50 metros de profundidad (165 pies), la presión absoluta es de 6 bar (1 bar correspondiente a la presión atmosférica + 5 bar por la debida al agua) y la presión parcial de los componentes principales del aire, 21 % oxígeno y 79 % nitrógeno son:
P(N2) = 6 bar x 0,79 = 4,74 bar
P(O2) = 6 bar x 0,21 = 1,26 bar
El margen considerado seguro en cuanto a las presiones parciales de oxígeno en una mezcla gaseosa está entre 0,16 bar y 1,6 bar. Hay riesgo de sufrir hipoxia y pérdida repentina del conocimiento con una P(O2) menor de 0,16 bar. La toxicidad del oxígeno, implicando convulsiones, se convierte en un riesgo con una P(O2) superior a 1,6 bar. La presión parcial del oxígeno determina la profundidad máxima operativa de una mezcla gaseosa.
La narcosis producida por efecto del nitrógeno es un problema en las mezclas gaseosas que contienen dicho gas. La presión típica máxima prevista del nitrógeno en submarinismo recreativo es de unos 3,2 bar, basada en una profundidad equivalente de aire de 30 metros.









propiedades coligativas a aquellas propiedades de una disolución que dependen únicamente de la concentración. Generalmente expresada como concentración equivalente, es decir, de la cantidad de partículas de soluto por partículas totales, y no de la composición química del soluto y del solvente diluido en agua.
Están estrechamente relacionadas con la presión de vapor, que es la presión que ejerce la fase de vapor sobre la fase líquida, cuando el líquido se encuentra en un recipiente cerrado. La presión de vapor depende del solvente y de la temperatura a la cual sea medida (a mayor temperatura, mayor presión de vapor). Se mide cuando el sistema llega al equilibrio dinámico.

Los líquidos no volátiles presentan interacción entre soluto y disolvente, por lo tanto su presión de vapor es pequeña, mientras que los líquidos volátiles tienen interacciones moleculares más débiles, lo que aumenta la presión de vapor. Si el soluto que se agrega es no volátil, se producirá un descenso de la presión de vapor, ya que este reduce la capacidad del disolvente a pasar de la fase líquida a la fase vapor. El grado en que un soluto no volátil disminuye la presión de vapor es proporcional a su concentración.
Este efecto es el resultado de dos factores:
  1. La disminución del número de moléculas del disolvente en la superficie libre.
  2. La aparición de fuerzas atractivas entre las moléculas del soluto y las moléculas del disolvente, dificultando su paso a vapor.


Descenso crioscópico[editar]

El soluto obstaculiza la formación de cristales sólidos, por ejemplo el líquido anticongelante de los que hacen descender su punto de congelación.
ΔT = Kf · m
  • m es la molalidad. Se expresa en moles de soluto por kilogramo de disolvente (mol/kg).
  • ΔT es el descenso del punto de congelación y es igual a Tf - T donde T es el punto de congelación de la solución y Tf es el punto de congelación del disolvente puro.
  • Kf es una constante de congelación del disolvente. Su valor, cuando el solvente es agua es 1,86 ºC.kg/mol.

Aplicación[editar]

Para enfriar algo rápidamente se hace una mezcla de hielo con sal o, si tiene precaución, alcohol. El punto de congelación bajará y el hielo se derretirá rápidamente. Pese a aparentar haberse perdido el frío, la mezcla formada estará en realidad a unos cuantos grados bajo cero y será mucho más efectiva para enfriar que los cubos de hielo sólidos. Este proceso de descenso de temperatura también es coadyuvado por la reacción entre el agua y el NaCl en si, debido a que es una reacción endotérmica, por lo que necesita calor para proceder. Este calor lo obtiene de la temperatura del hielo, disminuyéndola de 0°C a unos grados por debajo.
A pesar de que el hielo tiene una conductividad térmica cuatro veces mayor que el agua líquida, ésta contacta mejor el cuerpo a enfriar, por lo que la superficie para la transferencia de calor será mayor, lo que también contribuye al mejor enfriamiento. Es una consecuencia del descenso de la presión de vapor.
El agua se congela a partir de los 0 °C, mientras que una solución formada por agua y sal se congelará a menor temperatura (de ahí que se utilice sal para fundir nieve o hielo con mayor facilidad).

Aplicación del frío en la congelación de alimentos[editar]

La congelación es la aplicación más drástica del frío
• Temperatura del alimento < punto de congelación
• Temperaturas de conservación más o menos -20 °C
• Disminuye la actividad del agua (forma de hielo) 25, 3per
• No hay desarrollo microbiano, pero no destruye todas las bacterias
• Limita la acción de la mayoría de las reacciones químicas y enzimáticas
• Aumento de la vida útil de los alimentos
• Se mantienen las características organolépticas y valor nutritivo si el proceso de congelación y almacenamiento son los adecuados
•La Congelación es el mejor método para conservación a largo plazo
•La Congelación y almacenamiento realizados correctamente permiten la no variación de propiedades organolépticas y nutritivas y una vida útil elevada. [1]

Aumento ebulloscópico[editar]

Al agregar moléculas o iones a un disolvente puro, la temperatura en el que éste entra en ebullición es más alto. Por ejemplo, el agua pura a presión atmosférica ebulle a 100° C, pero si se disuelve algo en ella el punto de ebullición sube algunos grados centígrados.
ΔTb = Kb · m
  • m es la molalidad. Se expresa en moles de soluto por kilogramo de disolvente (mol/kg).
  • ΔTb es el aumento del punto de ebullición y es igual a T - Tb donde T es el punto de ebullición de la solución y Tb el del disolvente puro.
  • Kb es una constante de ebullición del disolvente. Su valor cuando el solvente es agua es 0,512 °C/molal.

Aplicación[editar]

Cuando una sal se disuelve lo hace disociándose. Por ejemplo, un mol de NaCl se disociará en un mol de Na+ y un mol de Cl-, con un total de dos moles en disolución, por eso una disolución de agua con electrolitos, como NaCl en agua, requiere más temperatura para hervir y no obedece la ley de Raoult. Se debe aplicar a dicha ley un factor de corrección conocido como el Factor de van't Hoff.
El punto de ebullición es la temperatura a la cual la presión de vapor de un solvente o solución iguala la presión externa y se observa las moléculas de líquido transformarse en gas. Por ejemplo, a presión externa de 1 atm, el agua hierve (tiene un punto de evaporación) a 100° C, si se modifica la presión externa se podría requerir más o menos temperatura para hervir el agua.
Una disolución entre un soluto y un solvente, como glucosa y agua, obedece la Ley de Raoult modificando el ΔTb, pues modifica los valores de molalidad

Presión osmótica[editar]

La ósmosis es la tendencia que tienen los solventes a ir desde zonas de menor concentración hacia zonas de mayor concentración de soluto. El efecto puede pensarse como una tendencia de los solventes a "diluir". Es el pasaje espontáneo de solvente desde una solución más diluida (menos concentrada) hacia una solución menos diluida (más concentrada), cuando se hallan separadas por una membrana semipermeable. La presión osmótica (π) se define como la presión requerida para evitar el paso de solvente a través de una membrana semipermeable, y cumple con la expresión:
 (también: π)
Teniendo en cuenta que n/V representa la molaridad (M) de la solución obtenemos:
Al igual que en la ley de los gases ideales, la presión osmótica no depende de la carga de las partículas.
Observación: Se utiliza la unidad de molaridad (M) para expresar la concentración ya que el fenómeno de ósmosis ocurre a temperatura constante (de esto se deduce que las unidades de concentración para el ascenso ebulloscópico y el descenso crioscópico estén dadas en molalidad (m), ya que este tipo de expresión no varía con la temperatura)...

Aplicación[editar]

El experimento más típico para observar el fenómeno de ósmosis es el siguiente:
  • Se colocan dos soluciones con distinta concentración (por ejemplo, una consta de agua con sal común o azúcar y la otra de agua sola).
  • Ambas soluciones se ponen en contacto a través de una membrana semipermeable que permite el movimiento del agua a través de ella, es decir, que permite que el solvente pase y las partículas no. El papel celofán suele funcionar, pero debe ser verdadero papel celofán y no sus sustitutos.
  • Al cabo de un tiempo se podrá observar que el solvente ha pasado de la solución diluida hacia la solución concentrada y los niveles de líquido han cambiado.
Las membranas celulares son semipermeables, la observación al microscopio de células que previamente han estado sumergidas en soluciones de sal común o azúcar, permite constatar el efecto de la entrada de agua (turgencia) o la pérdida de agua (plasmólisis) en función de que el medio exterior sea hipertónico o hipotónicorespecto al medio interno celular.










El volumen molar de una sustancia, simbolizado Vm,1​ es el volumen de un mol de esta. La unidad del Sistema Internacional de Unidades es el metro cúbico por mol:
m3 · mol-1
Un mol de cualquier sustancia contiene  partículas.2​ En el caso de sustancias gaseosasmoleculares un mol contiene NA moléculas. De aquí resulta, teniendo en cuenta la ley de Avogadro, que un mol de cualquier sustancia gaseosa ocupará siempre el mismo volumen (medido en las mismas condiciones de presión y temperatura).
Experimentalmente, se ha podido comprobar que el volumen que ocupa un mol de cualquier gas ideal en condiciones normales (Presión = 10^5 pascales, Temperatura = 273,15 K = 0 °C) es de 22,4 litros.3​Este valor se conoce como volumen molar normal de un gas.
Este valor del volumen molar corresponde a los llamados gases ideales o perfectos; los gases ordinarios no son perfectos y su volumen molar se aparta ligeramente de este valor. Así los volúmenes molares de algunos gases son:
En el caso de sustancias en estado sólido o líquido el volumen molar es mucho menor y distinto para cada sustancia. Por ejemplo:
  • Para el nitrógeno líquido (–210 °C) el volumen molar es de 34,6 cm3.
  • Para el agua líquida (4 °C) el volumen molar es de 18,0 cm3.

Ejemplo[editar]

  • ¿Que volumen ocupan 30 gramos de gas nitrógeno, a cero grados Celsius y una atmósfera de presión? Masa atómica del nitrógeno= 14,0067.
Haciendo la regla de tres:
despejando x:
realizadas las operaciones da como resultado:
que es el volumen ocupado por 30 gramos de nitrógeno a cero grados Celsius y una atmósfera de presión.
  • ¿Cuál es la masa de 50 litros de gas oxígeno , a cero grados Celsius y una atmósfera de presión? Masa atómica del oxígeno = 15,9994.
Por regla de tres tenemos que:
despejando x:
realizadas las operaciones da como resultado:
Que es la masa en gramos de 50 litros de oxígeno en condiciones normales: cero grados Celsius y una atmósfera de presión.

LA CANTIDAD DE SUSTANCIA: EL MOL

Desde el siglo XVIII se sabe que los elementos químicos se combinan de diferentes maneras originando gran variedad de compuestos y que lo hacen en una proporción definida en cada uno de ellos, como se refleja en las fórmulas de las moléculas:
Las fórmulas químicas representan el número de átomos que se unen entre sí para formar una determinada molécula.
molecula-agua-oxigeno-hidrogeno
Por ejemplo, la fórmula para el agua es H2O, lo que significa que cada molécula de agua posee dos átomos de hidrógeno unidos a un átomo de oxígeno. Si los átomos tuvieran el tamaño suficiente como para manipularlos con la mano, no tendríamos más que coger dos átomos de hidrógeno y enlazarlos a uno de oxígeno para obtener una molécula de agua. Sin embargo, esto es sencillamente imposible: ni podemos ver los átomos a simple vista, ni existen aparatos tan sofisticados y precisos como para maniobrar con ellos uno a uno.

LA IDEA DEL ÁTOMO-GRAMO Y LA MOLÉCULA-GRAMO

Pensemos de nuevo en el agua, formada por dos átomos de hidrógeno más uno de oxígeno. Si tuviéramos cuatro átomos de hidrógeno y dos de oxígeno, podríamos formar dos moléculas de agua; con seis hidrógenos y cuatro oxígenos, obtendríamos tres de agua… Manteniendo la misma proporción, podríamos escoger una cifra lo suficientemente grande como para obtener una cantidad de átomos o moléculas tal que sea apreciable y manejable. Es por ello que necesitamos definir una unidad de medida proporcional al número de átomos o moléculas y que, a su vez, se pueda relacionar con alguna magnitud fácilmente medible en el laboratorio.
Así, surgió la idea de emplear ciertas cantidades en gramos para cada átomo o molécula, denominadas átomo-gramo o molécula-gramo, respectivamente:
Un átomo-gramo es la cantidad de un elemento, expresada en gramos, que coincide numéricamente con su masa atómica relativa.
Una molécula-gramo es la cantidad de un compuesto, expresada en gramos, que coincide numéricamente con su masa molecular.
Siguiendo con el ejemplo del agua: un átomo-gramo de oxígeno es igual a 15’999 g, dos átomos-gramos de hidrógeno equivalen a 2’016 g, y una molécula-gramo de agua es, en consecuencia, 18’015 g, es decir, la suma de los anteriores valores. Evidentemente, los valores de un átomo-gramo o molécula-gramo varían para cada elemento o compuesto, pero tienen la enorme ventaja de representar siempre el mismo número de átomos o moléculas, por lo que representan cantidades que guardan entre sí las mismas relaciones que la de los elementos y compuestos a los que hacen referencia (un átomo-gramo de oxígeno se combina con dos átomos-gramos de hidrógeno en cada molécula-gramo de agua).

EL NÚMERO DE AVOGADRO

Un átomo-gramo (o molécula-gramo) representa una masa veces más grande que la masa atómica (o molecular) del elemento (o compuesto) al que se refiere:
Número-avogadro-atomo-molecula-gramo.png
Por lo que N no es otra cosa que el número de átomos o moléculas contenidos en un átomo-gramo o en una molécula-gramo, respectivamente. Este número se conoce en la actualidad como constante de Avogadro, quien, en 1811, propuso por primera vez que el volumen de un gas (a una determinada presión y temperatura) es proporcional al número de átomos o moléculas, independientemente de la naturaleza del gas.
El valor del número o constante de AvogadroNA, determinado experimentalmente, es:
número-avogadro
Así, tanto un átomo-gramo como una molécula-gramo, de la sustancia que sea, contienen siempre el número de Avogadro de átomos o moléculas. Estos términos de átomo-gramo y molécula-gramo fueron reemplazados, con el tiempo, por una nueva unidad de cantidad de sustancia: el mol.

LA DEFINICIÓN DE MOL

Desde la XIV Conferencia General de Pesas y Medidas, celebrada en 1971, se adoptó el mol como unidad de cantidad de sustancia, considerándose esta una de las siete magnitudes fundamentales del Sistema Internacional.
Se define mol (n) como la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 0’012 kilogramos carbono-12.
Cuando se emplea el mol, las entidades elementales deben especificarse y pueden ser átomos, moléculas, iones, electrones, otras partículas o agrupaciones específicas de tales partículas.

No hay comentarios:

Publicar un comentario